主成分分析法

主成分分析法

综述:数据降维的方法

可以用一种线性变换的思想去理解,比如二维的一条直线,我们可以通过变换,使得这一条直线落在x或y轴上,达到降维的效果。

去中心化(把坐标原点放在数据中心)

找坐标系,找到数据方差最大的方向,就是第一主成分。(如果第一主成分不足以表达,就考虑吧选取第二个)

为了有效反映原来信息,第一主成分和第二主成分的协方差为0.以此类推可以获得p个主成分。这些主成分是互不相关,是依次递减的。

累计方差贡献率大于百分之80就可以了,或者特征根大于1就可以了。

?根据线性代数的知识,我们需要一则伸缩,二则旋转,伸缩不是问题

旋转的矩阵R又从何而来?

即是协方差矩阵的特征向量就是R。

协方差定义=

img
image-20240129173904717
image-20240129173917094
image-20240129173940409
image-20240129173956777

例题:

image-20240129174252433
image-20240129174259805
image-20240129174305765
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
clear;clc
load data1.mat % 主成分聚类
% load data2.mat % 主成分回归

% 注意,这里可以对数据先进行描述性统计
% 描述性统计的内容见第5讲.相关系数
[n,p] = size(x); % n是样本个数,p是指标个数

%% 第一步:对数据x标准化为X
X=zscore(x); % matlab内置的标准化函数(x-mean(x))/std(x)

%% 第二步:计算样本协方差矩阵
R = cov(X);

%% 注意:以上两步可合并为下面一步:直接计算样本相关系数矩阵
R = corrcoef(x);
disp('样本相关系数矩阵为:')
disp(R)

%% 第三步:计算R的特征值和特征向量
% 注意:R是半正定矩阵,所以其特征值不为负数
% R同时是对称矩阵,Matlab计算对称矩阵时,会将特征值按照从小到大排列哦
% eig函数的详解见第一讲层次分析法的视频
[V,D] = eig(R); % V 特征向量矩阵 D 特征值构成的对角矩阵


%% 第四步:计算主成分贡献率和累计贡献率
lambda = diag(D); % diag函数用于得到一个矩阵的主对角线元素值(返回的是列向量)
lambda = lambda(end:-1:1); % 因为lambda向量是从小大到排序的,我们将其调个头
contribution_rate = lambda / sum(lambda); % 计算贡献率
cum_contribution_rate = cumsum(lambda)/ sum(lambda); % 计算累计贡献率 cumsum是求累加值的函数
disp('特征值为:')
disp(lambda') % 转置为行向量,方便展示
disp('贡献率为:')
disp(contribution_rate')
disp('累计贡献率为:')
disp(cum_contribution_rate')
disp('与特征值对应的特征向量矩阵为:')
% 注意:这里的特征向量要和特征值一一对应,之前特征值相当于颠倒过来了,因此特征向量的各列需要颠倒过来
% rot90函数可以使一个矩阵逆时针旋转90度,然后再转置,就可以实现将矩阵的列颠倒的效果
V=rot90(V)';
disp(V)


%% 计算我们所需要的主成分的值
m =input('请输入需要保存的主成分的个数: ');
F = zeros(n,m); %初始化保存主成分的矩阵(每一列是一个主成分)
for i = 1:m
ai = V(:,i)'; % 将第i个特征向量取出,并转置为行向量
Ai = repmat(ai,n,1); % 将这个行向量重复n次,构成一个n*p的矩阵
F(:, i) = sum(Ai .* X, 2); % 注意,对标准化的数据求了权重后要计算每一行的和
end

%% (1)主成分聚类 : 将主成分指标所在的F矩阵复制到Excel表格,然后再用Spss进行聚类
% 在Excel第一行输入指标名称(F1,F2, ..., Fm)
% 双击Matlab工作区的F,进入变量编辑中,然后复制里面的数据到Excel表格
% 导出数据之后,我们后续的分析就可以在Spss中进行。

%%(2)主成分回归:将x使用主成分得到主成分指标,并将y标准化,接着导出到Excel,然后再使用Stata回归
% Y = zscore(y); % 一定要将y进行标准化哦~
% 在Excel第一行输入指标名称(Y,F1, F2, ..., Fm)
% 分别双击Matlab工作区的Y和F,进入变量编辑中,然后复制里面的数据到Excel表格
% 导出数据之后,我们后续的分析就可以在Stata中进行。