并查集训练
并查集训练
[NOI2015] 程序自动分析
题目描述
在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。
考虑一个约束满足问题的简化版本:假设 \(x_1,x_2,x_3,\cdots\) 代表程序中出现的变量,给定 \(n\) 个形如 \(x_i=x_j\) 或 \(x_i\neq x_j\) 的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:\(x_1=x_2,x_2=x_3,x_3=x_4,x_4\neq x_1\),这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。
输入格式
输入的第一行包含一个正整数 \(t\),表示需要判定的问题个数。注意这些问题之间是相互独立的。
对于每个问题,包含若干行:
第一行包含一个正整数 \(n\),表示该问题中需要被满足的约束条件个数。接下来 \(n\) 行,每行包括三个整数 \(i,j,e\),描述一个相等/不等的约束条件,相邻整数之间用单个空格隔开。若 \(e=1\),则该约束条件为 \(x_i=x_j\)。若\(e=0\),则该约束条件为 \(x_i\neq x_j\)。
输出格式
输出包括 \(t\) 行。
输出文件的第 \(k\) 行输出一个字符串
YES
或者 NO
(字母全部大写),YES
表示输入中的第 \(k\)
个问题判定为可以被满足,NO
表示不可被满足。
样例 #1
样例输入 #1
1 | 2 |
样例输出 #1
1 | NO |
样例 #2
样例输入 #2
1 | 2 |
样例输出 #2
1 | YES |
提示
【样例解释1】
在第一个问题中,约束条件为:\(x_1=x_2,x_1\neq x_2\)。这两个约束条件互相矛盾,因此不可被同时满足。
在第二个问题中,约束条件为:\(x_1=x_2,x_1 = x_2\)。这两个约束条件是等价的,可以被同时满足。
【样例说明2】
在第一个问题中,约束条件有三个:\(x_1=x_2,x_2= x_3,x_3=x_1\)。只需赋值使得 \(x_1=x_2=x_3\),即可同时满足所有的约束条件。
在第二个问题中,约束条件有四个:\(x_1=x_2,x_2= x_3,x_3=x_4,x_4\neq x_1\)。由前三个约束条件可以推出 \(x_1=x_2=x_3=x_4\),然而最后一个约束条件却要求 \(x_1\neq x_4\),因此不可被满足。
【数据范围】
所有测试数据的范围和特点如下表所示:
勘误:测试点 \(8 \sim 10\) 的 \(i, j\) 约束为 \(1 \leq i, j \leq 10^9\),而不是下图中的 \(10^{10}\)。
并查集+离散化
数据很大
1 |
|
[NOI2002] 银河英雄传说
题目背景
公元 \(5801\) 年,地球居民迁至金牛座 \(\alpha\) 第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展。
宇宙历 \(799\) 年,银河系的两大军事集团在巴米利恩星域爆发战争。泰山压顶集团派宇宙舰队司令莱因哈特率领十万余艘战舰出征,气吞山河集团点名将杨威利组织麾下三万艘战舰迎敌。
题目描述
杨威利擅长排兵布阵,巧妙运用各种战术屡次以少胜多,难免恣生骄气。在这次决战中,他将巴米利恩星域战场划分成
\(30000\) 列,每列依次编号为 \(1, 2,\ldots
,30000\)。之后,他把自己的战舰也依次编号为 \(1, 2, \ldots , 30000\),让第 \(i\) 号战舰处于第 \(i\)
列,形成“一字长蛇阵”,诱敌深入。这是初始阵形。当进犯之敌到达时,杨威利会多次发布合并指令,将大部分战舰集中在某几列上,实施密集攻击。合并指令为
M i j
,含义为第 \(i\)
号战舰所在的整个战舰队列,作为一个整体(头在前尾在后)接至第 \(j\)
号战舰所在的战舰队列的尾部。显然战舰队列是由处于同一列的一个或多个战舰组成的。合并指令的执行结果会使队列增大。
然而,老谋深算的莱因哈特早已在战略上取得了主动。在交战中,他可以通过庞大的情报网络随时监听杨威利的舰队调动指令。
在杨威利发布指令调动舰队的同时,莱因哈特为了及时了解当前杨威利的战舰分布情况,也会发出一些询问指令:C i j
。该指令意思是,询问电脑,杨威利的第
\(i\) 号战舰与第 \(j\)
号战舰当前是否在同一列中,如果在同一列中,那么它们之间布置有多少战舰。
作为一个资深的高级程序设计员,你被要求编写程序分析杨威利的指令,以及回答莱因哈特的询问。
输入格式
第一行有一个整数 \(T\)(\(1 \le T \le 5 \times 10^5\)),表示总共有 \(T\) 条指令。
以下有 \(T\) 行,每行有一条指令。指令有两种格式:
M i j
:\(i\) 和 \(j\) 是两个整数(\(1 \le i,j \le 30000\)),表示指令涉及的战舰编号。该指令是莱因哈特窃听到的杨威利发布的舰队调动指令,并且保证第 \(i\) 号战舰与第 \(j\) 号战舰不在同一列。C i j
:\(i\) 和 \(j\) 是两个整数(\(1 \le i,j \le 30000\)),表示指令涉及的战舰编号。该指令是莱因哈特发布的询问指令。
输出格式
依次对输入的每一条指令进行分析和处理:
- 如果是杨威利发布的舰队调动指令,则表示舰队排列发生了变化,你的程序要注意到这一点,但是不要输出任何信息。
- 如果是莱因哈特发布的询问指令,你的程序要输出一行,仅包含一个整数,表示在同一列上,第 \(i\) 号战舰与第 \(j\) 号战舰之间布置的战舰数目。如果第 \(i\) 号战舰与第 \(j\) 号战舰当前不在同一列上,则输出 \(-1\)。
样例 #1
样例输入 #1
1 | 4 |
样例输出 #1
1 | -1 |
提示
样例解释
战舰位置图:表格中阿拉伯数字表示战舰编号。
这题挺有趣的,或许可以更好的理解并查集
1 |
|
[CEOI1999] Parity Game
题目描述
Alice 和 Bob 在玩一个游戏:他写一个由 \(0\) 和 \(1\) 组成的序列。Alice 选其中的一段(比如第 \(3\) 位到第 \(5\) 位),问他这段里面有奇数个 \(1\) 还是偶数个 \(1\)。Bob 回答你的问题,然后 Alice 继续问。Alice 要检查 Bob 的答案,指出在 Bob 的第几个回答一定有问题。有问题的意思就是存在一个 \(01\) 序列满足这个回答前的所有回答,而且不存在序列满足这个回答前的所有回答及这个回答。
输入格式
第 \(1\) 行一个整数 \(n\),是这个 \(01\) 序列的长度。
第 \(2\) 行一个整数 \(m\),是问题和答案的个数。
第 \(3\)
行开始是问题和答案,每行先有两个整数,表示你询问的段的开始位置和结束位置。然后是
Bob 的回答。odd
表示有奇数个 \(1\),even
表示有偶数个 \(1\)。
输出格式
输出一行,一个数 \(x\),表示存在一个 \(01\) 序列满足第 \(1\) 到第 \(x\) 个回答,但是不存在序列满足第 \(1\) 到第 \(x+1\) 个回答。如果所有回答都没问题,你就输出所有回答的个数。
样例 #1
样例输入 #1
1 | 10 |
样例输出 #1
1 | 3 |
提示
对于 \(100\%\) 的数据,\(1 \le n \leq 10^9\),\(m \leq 5 \times 10^3\)。
种类并查集+离散化
1 |
|
[NOI2001] 食物链
题目描述
动物王国中有三类动物 \(A,B,C\),这三类动物的食物链构成了有趣的环形。\(A\) 吃 \(B\),\(B\) 吃 \(C\),\(C\) 吃 \(A\)。
现有 \(N\) 个动物,以 \(1 \sim N\) 编号。每个动物都是 \(A,B,C\) 中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这 \(N\) 个动物所构成的食物链关系进行描述:
- 第一种说法是
1 X Y
,表示 \(X\) 和 \(Y\) 是同类。 - 第二种说法是
2 X Y
,表示 \(X\) 吃 \(Y\)。
此人对 \(N\) 个动物,用上述两种说法,一句接一句地说出 \(K\) 句话,这 \(K\) 句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
- 当前的话与前面的某些真的话冲突,就是假话;
- 当前的话中 \(X\) 或 \(Y\) 比 \(N\) 大,就是假话;
- 当前的话表示 \(X\) 吃 \(X\),就是假话。
你的任务是根据给定的 \(N\) 和 \(K\) 句话,输出假话的总数。
输入格式
第一行两个整数,\(N,K\),表示有 \(N\) 个动物,\(K\) 句话。
第二行开始每行一句话(按照题目要求,见样例)
输出格式
一行,一个整数,表示假话的总数。
样例 #1
样例输入 #1
1 | 100 7 |
样例输出 #1
1 | 3 |
提示
对于全部数据,\(1\le N\le 5 \times 10^4\),\(1\le K \le 10^5\)。
1 |
|