相关系数

image-20240129170729588

背景知识

image-20240129170914371
image-20240129170932334
image-20240129170952987

一定要确定两个变量之间线性相关程度的指标

image-20240129171117827

提示

image-20240129171136975
image-20240129171450116

假设检验理论部分:略

这篇讲的很好,可以直接看

数学建模笔记——相关系数 - 知乎 (zhihu.com)

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
clear;clc
load 'physical fitness test.mat' %文件名如果有空格隔开,那么需要加引号
% https://ww2.mathworks.cn/help/matlab/ref/corrcoef.html
%% 统计描述
MIN = min(Test); % 每一列的最小值
MAX = max(Test); % 每一列的最大值
MEAN = mean(Test); % 每一列的均值
MEDIAN = median(Test); %每一列的中位数
SKEWNESS = skewness(Test); %每一列的偏度
KURTOSIS = kurtosis(Test); %每一列的峰度
STD = std(Test); % 每一列的标准差
RESULT = [MIN;MAX;MEAN;MEDIAN;SKEWNESS;KURTOSIS;STD] %将这些统计量放到一个矩阵中表示


%% 计算各列之间的相关系数
% 在计算皮尔逊相关系数之前,一定要做出散点图来看两组变量之间是否有线性关系
% 这里使用Spss比较方便: 图形 - 旧对话框 - 散点图/点图 - 矩阵散点图

R = corrcoef(Test) % correlation coefficient


%% 假设检验部分
x = -4:0.1:4;
y = tpdf(x,28); %求t分布的概率密度值 28是自由度
figure(1)
plot(x,y,'-')
grid on % 在画出的图上加上网格线
hold on % 保留原来的图,以便继续在上面操作
% matlab可以求出临界值,函数如下
tinv(0.975,28) % 2.0484
% 这个函数是累积密度函数cdf的反函数
plot([-2.048,-2.048],[0,tpdf(-2.048,28)],'r-')
plot([2.048,2.048],[0,tpdf(2.048,28)],'r-')


%% 计算p值
x = -4:0.1:4;
y = tpdf(x,28);
figure(2)
plot(x,y,'-')
grid on
hold on
% 画线段的方法
plot([-3.055,-3.055],[0,tpdf(-3.055,28)],'r-')
plot([3.055,3.055],[0,tpdf(3.055,28)],'r-')
disp('该检验值对应的p值为:')
disp((1-tcdf(3.055,28))*2) %双侧检验的p值要乘以2

%% 计算各列之间的相关系数以及p值
[R,P] = corrcoef(Test)
% 在EXCEL表格中给数据右上角标上显著性符号吧
P < 0.01 % 标记3颗星的位置
(P < 0.05) .* (P > 0.01) % 标记2颗星的位置
(P < 0.1) .* (P > 0.05) % % 标记1颗星的位置
% 也可以使用Spss操作哦 看我演示

%% 正态分布检验
% 正态分布的偏度和峰度
x = normrnd(2,3,100,1); % 生成100*1的随机向量,每个元素是均值为2,标准差为3的正态分布
skewness(x) %偏度
kurtosis(x) %峰度
qqplot(x)

% 检验第一列数据是否为正态分布
[h,p] = jbtest(Test(:,1),0.05)
[h,p] = jbtest(Test(:,1),0.01)

% 用循环检验所有列的数据
n_c = size(Test,2); % number of column 数据的列数
H = zeros(1,6); % 初始化节省时间和消耗
P = zeros(1,6);
for i = 1:n_c
[h,p] = jbtest(Test(:,i),0.05);
H(i)=h;
P(i)=p;
end
disp(H)
disp(P)

% Q-Q图
qqplot(Test(:,1))

%% 斯皮尔曼相关系数
X = [3 8 4 7 2]' % 一定要是列向量哦,一撇'表示求转置
Y = [5 10 9 10 6]'
% 第一种计算方法
1-6*(1+0.25+0.25+1)/5/24

% 第二种计算方法
coeff = corr(X , Y , 'type' , 'Spearman')
% 等价于:
RX = [2 5 3 4 1]
RY = [1 4.5 3 4.5 2]
R = corrcoef(RX,RY)

% 计算矩阵各列的斯皮尔曼相关系数
R = corr(Test, 'type' , 'Spearman')

% 大样本下的假设检验
% 计算检验值
disp(sqrt(590)*0.0301)
% 计算p值
disp((1-normcdf(0.7311))*2) % normcdf用来计算标准正态分布的累积概率密度函数

% 直接给出相关系数和p值
[R,P]=corr(Test, 'type' , 'Spearman')