#include<bits/stdc++.h> usingnamespace std; using ll = longlong; constint maxn = 2e5 + 10; const ll mod = 1e9 + 7; ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘 // 快速幂 ll quickPow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans = (ans * a) % mod; b >>= 1; a = (a * a) % mod; } return ans; }
voidinit() { // 求阶乘 fac[0] = 1; for (int i = 1; i <= maxn; i++) { fac[i] = fac[i - 1] * i % mod; } // 求逆元 inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2); for (int i = maxn - 2; i >= 0; i--) { inv[i] = inv[i + 1] * (i + 1) % mod; } } ll C(int n, int m) { if (m > n) { return0; } if (m == 0) return1; return fac[n] * inv[m] % mod * inv[n - m] % mod; } ll get(ll a, ll b, ll c, ll d) { returnC(c - a + d - b, c - a) % mod; } intmain() { int n = 3; vector<int> a(n + 1); for (int i = 1; i <= n; i++) { cin >> a[i]; } sort(a.begin() + 1, a.end()); if (a[1] + a[2] == a[3]) { cout << "Yes" << '\n'; } else { cout << "No" << '\n'; } return0; }
#include<bits/stdc++.h> usingnamespace std; using ll = longlong; constint maxn = 2e5 + 10; const ll mod = 1e9 + 7; ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘 // 快速幂 ll quickPow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans = (ans * a) % mod; b >>= 1; a = (a * a) % mod; } return ans; }
voidinit() { // 求阶乘 fac[0] = 1; for (int i = 1; i <= maxn; i++) { fac[i] = fac[i - 1] * i % mod; } // 求逆元 inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2); for (int i = maxn - 2; i >= 0; i--) { inv[i] = inv[i + 1] * (i + 1) % mod; } } ll C(int n, int m) { if (m > n) { return0; } if (m == 0) return1; return fac[n] * inv[m] % mod * inv[n - m] % mod; } ll get(ll a, ll b, ll c, ll d) { returnC(c - a + d - b, c - a) % mod; } intmain() { string s; cin >> s; char t = s[0]; int ans = 0; for (auto c : s) { if (c != t) { ans++; } t = c; } cout << ans << '\n'; return0; }
D
D - An Invisible Hand
题目大意: 从 n
个数里面选两个数,答案为后一个数减前一个数的差的最大值。你现在需要修改一些数,将
Ai 修改为 A′i 的代价为 |Ai−A′i|,使答案至少小 1,求最小代价。
// LUOGU_RID: 173221337 #include<bits/stdc++.h> usingnamespace std; using ll = longlong; constint maxn = 2e5 + 10; const ll mod = 1e9 + 7; ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘 // 快速幂 ll quickPow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans = (ans * a) % mod; b >>= 1; a = (a * a) % mod; } return ans; }
voidinit() { // 求阶乘 fac[0] = 1; for (int i = 1; i <= maxn; i++) { fac[i] = fac[i - 1] * i % mod; } // 求逆元 inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2); for (int i = maxn - 2; i >= 0; i--) { inv[i] = inv[i + 1] * (i + 1) % mod; } } ll C(int n, int m) { if (m > n) { return0; } if (m == 0) return1; return fac[n] * inv[m] % mod * inv[n - m] % mod; } ll get(ll a, ll b, ll c, ll d) { returnC(c - a + d - b, c - a) % mod; } intmain() { int ans=0; int n, m; cin >> n >> m; vector<int> b(n + 1); int maxn = -1e9; int minn = 1e9; for (int i = 1; i <= n; i++) { int x; cin >> x; b[i] = x - minn; minn = min(minn, x); maxn = max(maxn, b[i]); } for (int i = 1; i <= n; i++) { if (b[i] == maxn) { ans++; } } cout << ans << '\n'; return0; }