AtCoder Beginner Contest 048

A

题目大意: 输入三个字符串,输出三个字符串的首字母。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 2e5 + 10;
const ll mod = 1e9 + 7;
ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘
// 快速幂
ll quickPow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (ans * a) % mod;
b >>= 1;
a = (a * a) % mod;
}
return ans;
}

void init()
{
// 求阶乘
fac[0] = 1;
for (int i = 1; i <= maxn; i++)
{
fac[i] = fac[i - 1] * i % mod;
}
// 求逆元
inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2);
for (int i = maxn - 2; i >= 0; i--)
{
inv[i] = inv[i + 1] * (i + 1) % mod;
}
}
ll C(int n, int m)
{
if (m > n)
{
return 0;
}
if (m == 0)
return 1;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
ll get(ll a, ll b, ll c, ll d)
{
return C(c - a + d - b, c - a) % mod;
}
int main()
{
string s;
string ans = "";
for (int i = 1; i <= 3; i++)
{
cin >> s;
ans = ans + s[0];
}
cout << ans << '\n';
return 0;
}

B

题目大意: 求 [a,b]中有多少个数能被 x 整除。

类似前缀和的思想。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 2e5 + 10;
const ll mod = 1e9 + 7;
ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘
// 快速幂
ll quickPow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (ans * a) % mod;
b >>= 1;
a = (a * a) % mod;
}
return ans;
}

void init()
{
// 求阶乘
fac[0] = 1;
for (int i = 1; i <= maxn; i++)
{
fac[i] = fac[i - 1] * i % mod;
}
// 求逆元
inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2);
for (int i = maxn - 2; i >= 0; i--)
{
inv[i] = inv[i + 1] * (i + 1) % mod;
}
}
ll C(int n, int m)
{
if (m > n)
{
return 0;
}
if (m == 0)
return 1;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
ll get(ll a, ll b, ll c, ll d)
{
return C(c - a + d - b, c - a) % mod;
}
int main()
{
ll a, b, x;
cin >> a >> b >> x;
if (x == 1)
{
cout << b - a + 1 << '\n';
}
else
{
cout << b / x - a / x + (a % x == 0) << '\n';
}
return 0;
}

C

题目大意: 给你 n 个数,每次可以选一个数减去 1,求最少的操作次数,使得任意相邻两个数之和不超过 x。

贪心即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// LUOGU_RID: 173223889
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 2e5 + 10;
const ll mod = 1e9 + 7;
ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘
// 快速幂
ll quickPow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (ans * a) % mod;
b >>= 1;
a = (a * a) % mod;
}
return ans;
}

void init()
{
// 求阶乘
fac[0] = 1;
for (int i = 1; i <= maxn; i++)
{
fac[i] = fac[i - 1] * i % mod;
}
// 求逆元
inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2);
for (int i = maxn - 2; i >= 0; i--)
{
inv[i] = inv[i + 1] * (i + 1) % mod;
}
}
ll C(int n, int m)
{
if (m > n)
{
return 0;
}
if (m == 0)
return 1;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
ll get(ll a, ll b, ll c, ll d)
{
return C(c - a + d - b, c - a) % mod;
}
int main()
{
int n;
ll m;
cin >> n >> m;
vector<ll> a(n + 1);
ll ans = 0;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
for (int i = 1; i <= n; i++)
{
if (a[i - 1] + a[i] > m)
{
ans += a[i] + a[i - 1] - m;
a[i] = m - a[i - 1];
// cout<<a[i]<<'\n';
}
}
cout << ans << '\n';
return 0;
}

D

题目大意: 给你一个字符串,这个字符串满足“相邻字符各不相同”的性质,两个人轮流对字符串进行操作,每次操作,可以选择一个字符(首字符和尾字符除外)消掉,要求消掉这个字符后剩下的字符串仍然满足“相邻字符各不相同”的性质,第一个不能操作的人失败。问:先手赢还是后手赢? 这是一个博弈游戏。 最终不能取的字符串必然是如下这样的格式:

ab、aba、abab、ababa、ababab、……

所以:

  • 如果首字符等于尾字符,则字符串长度为奇数的是必败态
  • 如果首字符不等于尾字符,则字符串长度为偶数的是必败态
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// LUOGU_RID: 173228102
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 2e5 + 10;
const ll mod = 1e9 + 7;
ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘
// 快速幂
ll quickPow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (ans * a) % mod;
b >>= 1;
a = (a * a) % mod;
}
return ans;
}

void init()
{
// 求阶乘
fac[0] = 1;
for (int i = 1; i <= maxn; i++)
{
fac[i] = fac[i - 1] * i % mod;
}
// 求逆元
inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2);
for (int i = maxn - 2; i >= 0; i--)
{
inv[i] = inv[i + 1] * (i + 1) % mod;
}
}
ll C(int n, int m)
{
if (m > n)
{
return 0;
}
if (m == 0)
return 1;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
ll get(ll a, ll b, ll c, ll d)
{
return C(c - a + d - b, c - a) % mod;
}
int main()
{
string s;
cin >> s;
int len = s.size();
if (s[0] == s[len - 1]) // 如果首尾相同
{
if (len % 2 == 0)
cout << "First" << '\n';
// 长度为偶数第一个人赢
else
cout << "Second" << '\n'; // 否则第二个人赢
}
else // 如果首尾不相同
{
if (len % 2 == 0)
cout << "Second" << '\n'; // 长度为偶数第二个人赢
else
cout << "First" << '\n'; // 否则第一个人赢
}

return 0;
}