AtCoder Beginner Contest 050

A

思路:依题意即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 2e5 + 10;
const ll mod = 1e9 + 7;
ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘
// 快速幂
ll quickPow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (ans * a) % mod;
b >>= 1;
a = (a * a) % mod;
}
return ans;
}

void init()
{
// 求阶乘
fac[0] = 1;
for (int i = 1; i <= maxn; i++)
{
fac[i] = fac[i - 1] * i % mod;
}
// 求逆元
inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2);
for (int i = maxn - 2; i >= 0; i--)
{
inv[i] = inv[i + 1] * (i + 1) % mod;
}
}
ll C(int n, int m)
{
if (m > n)
{
return 0;
}
if (m == 0)
return 1;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
ll get(ll a, ll b, ll c, ll d)
{
return C(c - a + d - b, c - a) % mod;
}
int n, k, l;
const int N = 1e6 + 100;
int f1[N];
int f2[N];
int find(int x, int *fa)
{
return fa[x] == x ? x : fa[x] = find(fa[x], fa);
}
void merge(int x, int y, int *fa)
{
fa[find(x, fa)] = fa[find(y, fa)];
}
map<pair<int, int>, int> mp;
int main()
{
int a, b;
char c;
cin >> a >> c >> b;
if (c == '+')
cout << a + b;
else
cout << a - b;
return 0;
}

B

思路:依题意即可。

记录总和即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 2e5 + 10;
const ll mod = 1e9 + 7;
ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘
// 快速幂
ll quickPow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (ans * a) % mod;
b >>= 1;
a = (a * a) % mod;
}
return ans;
}

void init()
{
// 求阶乘
fac[0] = 1;
for (int i = 1; i <= maxn; i++)
{
fac[i] = fac[i - 1] * i % mod;
}
// 求逆元
inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2);
for (int i = maxn - 2; i >= 0; i--)
{
inv[i] = inv[i + 1] * (i + 1) % mod;
}
}
ll C(int n, int m)
{
if (m > n)
{
return 0;
}
if (m == 0)
return 1;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
ll get(ll a, ll b, ll c, ll d)
{
return C(c - a + d - b, c - a) % mod;
}
int n, k, l;
const int N = 1e6 + 100;
int f1[N];
int f2[N];
int find(int x, int *fa)
{
return fa[x] == x ? x : fa[x] = find(fa[x], fa);
}
void merge(int x, int y, int *fa)
{
fa[find(x, fa)] = fa[find(y, fa)];
}
map<pair<int, int>, int> mp;
int main()
{

int n;
cin >> n;
ll sum = 0;
vector<ll> a(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i];
sum += a[i];
}
int m;
cin >> m;
for (int i = 1; i <= m; i++)
{
int j, k;
cin >> j >> k;
cout << sum - a[j] + k << "\n";
}
return 0;
}

C

思路:乘法原理+特判。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 2e5 + 10;
const ll mod = 1e9 + 7;
ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘
// 快速幂
ll quickPow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (ans * a) % mod;
b >>= 1;
a = (a * a) % mod;
}
return ans;
}

void init()
{
// 求阶乘
fac[0] = 1;
for (int i = 1; i <= maxn; i++)
{
fac[i] = fac[i - 1] * i % mod;
}
// 求逆元
inv[maxn - 1] = quickPow(fac[maxn - 1], mod - 2);
for (int i = maxn - 2; i >= 0; i--)
{
inv[i] = inv[i + 1] * (i + 1) % mod;
}
}
ll C(int n, int m)
{
if (m > n)
{
return 0;
}
if (m == 0)
return 1;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
ll get(ll a, ll b, ll c, ll d)
{
return C(c - a + d - b, c - a) % mod;
}
int n, k, l;
const int N = 1e6 + 100;
int f1[N];
int f2[N];
int find(int x, int *fa)
{
return fa[x] == x ? x : fa[x] = find(fa[x], fa);
}
void merge(int x, int y, int *fa)
{
fa[find(x, fa)] = fa[find(y, fa)];
}
map<pair<int, int>, int> mp;
int main()
{
int n;
cin >> n;
vector<int> a(n + 1);
map<int, int> mp;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
mp[a[i]]++;
}
if (n & 1)
{
bool flag = 0;
if (mp[0] != 1)
{
cout << 0 << '\n';
return 0;
}
for (int i = 2; i <= n - 1; i += 2)
{
if (mp[i] != 2)
{
cout << 0 << '\n';
return 0;
}
}
cout << quickPow(2, n / 2) << '\n';
}
else
{
for (int i = 1; i <= n; i += 2)
{
if (mp[i] != 2)
{
cout << 0 << '\n';
return 0;
}
}
cout << quickPow(2, n / 2) << '\n';
}
return 0;
}

D

\((u,v)\) 合法(即存在 \(a,b\)),则 \((2u,2v)\)\((2u+1,2v+1)\)\((2u,2v+2)\) 也必定合法。考虑后面新增一位,分讨 \(a,b\) 新增 \((0,0),(1,0),(1,1)\) 可得。

\(f(n)\) 表示 \(a+b=v\le n\) 的合法 \((u,v)\) 数。有转移 \(f(n)=f(\dfrac{n}{2})+f(\dfrac{n-1}{2})+f(\dfrac{n-2}{2})\),除法下取整。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// LUOGU_RID: 173256890
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 2e5 + 10;
const ll mod = 1e9 + 7;
ll inv[maxn], fac[maxn]; // 分别表示逆元和阶乘
// 快速幂
map<ll, ll> f;
ll cal(ll n)
{
if (f[n])
{
return f[n];
}
return f[n] = (cal(n / 2) + cal((n - 1) / 2) + cal((n - 2) / 2)) % mod;
}
int main()
{

ll n;
cin >> n;
f[0] = 1;
f[1] = 2;
ll ans = cal(n);
cout << ans << '\n';
return 0;
}

本次收获:领悟了一种奇妙的二进制递归?