Codeforces Round 952 (Div. 4)

A

模拟题。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include<bits/stdc++.h>
using namespace std;
void solve()
{
string a,b;
cin>>a>>b;
swap(a[0],b[0]);
cout<<a<<" "<<b<<'\n';
}
int main()
{
int t ;
cin>>t;
while(t--)
{
solve();
}
}

B

直接暴力累加即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <bits/stdc++.h>
using namespace std;
void solve()
{
int n;
cin >> n;
int maxn = 0;
int ans;
for (int i = 2; i <= n; i++)
{
int j = i;
int sum = 0;
int x = 0;
while (x + j <= n)
{
x += j;
sum += x;
if (sum > maxn && x <= n)
{
maxn = sum;
ans = i;
}
}
}
cout << ans << '\n';
}
int main()
{
int t;
cin >> t;
while (t--)
{
solve();
}
}

C

O(n)扫一遍即可。

遇到大的记录,sum加上之前大的数字。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
void solve()
{
int n;
cin >> n;
ll sum = 0;
ll maxn = 0;
ll ans = 0;
for (int i = 1; i <= n; i++)
{
ll x;
cin >> x;
if (x >= maxn)
{
sum += maxn;
maxn = x;
}
else
{
sum += x;
}
// cout<<sum<<' '<<maxn<<'-'<<'\n';
if (sum == maxn||sum==0&&maxn==0)
{
ans++;
}
}
cout << ans << '\n';
}
int main()
{
int t;
cin >> t;
while (t--)
{
solve();
}
}

D

观察到一个现象,只要是中间那个点,上下左右一定是相同的,其他点并没有这个现象。因此只需要用二维度的前缀和即可。

注意开数组开vector

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
void solve()
{
int n, m;
cin >> n >> m;
vector<vector<int>> a(n + 1, vector<int>(m + 1));
vector<vector<int>> s(n + 1, vector<int>(m + 1));
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
char c;
cin >> c;
if (c == '#')
{
a[i][j] = 1;
}
else
{
a[i][j] = 0;
}
}
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (a[i][j] == 1)
{
//(i,1,)(i,j)==(i,j)-(i,m) //(1,j)-(i,j) (i,j)--(n,j)
if (s[i][j] - s[i - 1][j] - s[i][1 - 1] + s[i - 1][1 - 1] == s[i][m] - s[i - 1][m] - s[i][j - 1] + s[i - 1][j - 1] && s[i][j] - s[1 - 1][j] - s[i][j - 1] + s[1 - 1][j - 1] == s[n][j] - s[i - 1][j] - s[n][j - 1] + s[i - 1][j - 1])
{
cout << i << ' ' << j << '\n';
return;
}
}
}
}
}
int main()
{
int t;
cin >> t;
while (t--)
{
solve();
}
}

E

由于每次计算个数的公式是(x - a + 1) * (y - b + 1) * (z - c + 1),因此剩下的就交给暴力枚举吧。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
void solve()
{
ll x, y, z, k;
ll ans = 0, cnt = 0;
cin >> x >> y >> z >> k;
for (ll a = 1; a <= x; a++)
{
for (ll b = 1; b <= y; b++)
{
if (k % (a * b) != 0 || k % (a * b) > z)
{
continue;
}
ll c = k / (a * b);
cnt = (x - a + 1) * (y - b + 1) * (z - c + 1);
ans = max(ans, cnt);
}
}
cout << ans << '\n';
}
int main()
{
int t;
cin >> t;
while (t--)
{
solve();
}
}

F

很明显的具有单调性适合进行二分答案的题目。

相信想到二分的话一定是可以解决这道题的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
void solve()
{
int n, m;
cin >> n >> m;
vector<ll> a(m + 1);
vector<ll> b(m + 1);
for (int i = 1; i <= m; i++)
{
cin >> a[i];
}
for (int i = 1; i <= m; i++)
{
cin >> b[i];
}
ll l = 1, r = 1e12;
ll ans = 1;
while (l <= r)
{
ll mid = l + r >> 1;
ll sum = 0;
for (int i = 1; i <= m; i++)
{
ll cs = (mid - 1) / b[i] + 1;
sum += cs * a[i];
if (sum >= n)
break;
}
if (sum >= n)
{
ans = mid;
r = mid - 1;
}
else
l = mid + 1;
}
cout << ans << "\n";
}
int main()
{
int t;
cin >> t;
while (t--)
{
solve();
}
}

G

首先用到一点前缀和的思想。

答案等于r那一部分减去l那一部分。

然后考虑猜个结论:不进位乘法可以满足要求,因此每次都是9/k进行快速幂即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int MOD = 1e9 + 7;
// 非递归快速幂
ll ksm(ll a, ll n,int MOD)
{
int ans = 1;
while (n)
{
if (n & 1) // 如果n的当前末位为1
ans = a * ans % MOD; // ans乘上当前的a
a = a * a % MOD; // a自乘
n >>= 1; // n往右移一位
}
return ans;
}
void solve()
{

ll l, r, k;
cin >> l >> r >> k;
cout << (ksm((9 / k) + 1, r, MOD) - ksm((9 / k) + 1, l, MOD) % MOD + MOD) % MOD << "\n";
}
int main()
{
int t;
cin >> t;
while (t--)
{
solve();
}
}